| Chapter 14: Inference For Regression (Last Topic:) 14.1 Inference about the modal Day 1 OBJ: You will find a conf. int. for the true slope (B) of a LSRL. Look @ Bottom of pg 780 to Bottom of pg. 782. Y= a+bx & Slope b and yount are statistics - they are calculated from the sample Data. (Like X + B) To Do Inference we think of a and b as estimators of parameters of and B (Like u+p) Conditions for Regression Inference · Linearity (Check the scatter plot for signs of curva time) · Triclependence (Check the residual plot for randomness) · Consistency of Variance (Check Residual Plot to Be superior it is not for shoot of the serious | |--| | Look @ Bottom of pg 780 to Bottom of pg 782. Q=a+bx & Slope b and unint are statistics - they are calculated from the sample Data (Like x + B) To Do Inference we think of a and b as estimators of parameters of and B (Like u+p) Conditions for Regression Inference Linearity (check the scatter plot for signs of curve time) | | Look @ Bottom of pg 780 to Bottom of pg 782. Q=a+bx & Slope b and unint are statistics - they are calculated from the sample Data (Like x + B) To Do Inference we think of a and b as estimators of parameters of and B (Like u+p) Conditions for Regression Inference Linearity (check the scatter plot for signs of curve time) | | Q= a+bx (Slope b and ynint are statistics - they are calculated from the sample Data (Like X + B) To Do Inference we think of a and b as estimators of parameters of and B (Like u+p) Conditions for Regression Inference Linearity (check the scatter plot for signs of curva ture) | | Q= a+bx & Slope b and ynint are statistics - they are calculated from the sample Data (Like X + B) To Do Inference we think of a and b as estimators of parameters of and B (Like u+p) Conditions for Regression Inference Linearity (check the scatter plot for signs of curva ture) | | To Do Inference we think of a and b as estimators of parameters of and B (Like u+p) Conditions for Regression Inference Linearity (check the scatter plot for signs of curve time) | | Conditions for Regression Inference Linearity (check the scatter plot for signs of curve time) | | Conditions for Regression Inference. Linearity (check the scatter plot for signs of curva ture) | | Conditions for Regression Inference Linearity (check the scatter plot for signs of curva ture) | | · Linearity (check the scatter plot for signs of curva ture) | | · Independence (crock the residual plat for randomness) · Consistency of Variance / Chock Residual Plat to Re | | · Consistency of Variance / Chock Residual Plat to Re | | | | a construction of the cons | | · Normality of Errors (Check the histogram of the residuals) | | Inference | | eThe first step is to estimate the unknown parameters | | a, B, c. | | · Calculate J= a+bx | | · b of the LSRL is an unbiased estimator of the true | | Slope P. | | oa of the LSRL is an unbiased estimator of the true | | | | Example 14.2 + 2 IP After 3 Residuals = 60s y- Exp. y | | | | Standard Error About the LSRL | | | | 5= VE Residual = IN (1-7) } SON FS. (In Num. of So St. Day) N-2 Suse S to astimate the unknown of. | | V n-2 I h-2 I use S to estimate the unknown 5. | | | | df of s is n-2 (why n-2 instead of n-1?) blc how we are observing 2-variables! | | DIC how we are observing d-variables! | | Conf. Int. For B = b ± t* 5 Example 14.4 | | Conf. Int. For B = b ± ±* 5 [Example 14.4] [Example 14.1] | 2007 & Ho: B=1 . The mean of y D's at the same rate as X * Regression output (Statistical Software) Give t and Two sided p-value. and the second of o entronomic de la companya de la com en ja men kanan di kacamatan ja mangan di penganahan di kacamatan di kacamatan di kacamatan di kacamatan di ka erina di kananana da mendapatan da mendapatan da kemanjan da mendapatan da kananan da kemanda da kemanda da ke Example 14.5 Example 14.6 HW: 14.6 OTher values For Ho: B=) In other words that the slope is or is not zero. I think it is easy to get lulled into that idea, especially b/c the model utility test is so ubiquitous and we rarely (it seems) have an occasion to test a non-zero slope. I think this rarity is probably due to a lack of knowledge of situations that might lead to hypothesis tests (a) other than zero, and (b) other than slope for regression. Let me see if I can dredge something up... ## Rooblem #1 Test Prep Company Suppose I have a wiz-bang new method of test prep for the SAT, and I want to guarantee a 25 point increase across the board on the next test. Then I would think a reasonable model would be: NewScore = alpha + beta*OldScore + Error. My null hypotheses would seem to be: alpha = 25 AND beta = 1. ## Problem:#2...The |cubic| scaling hypothesis/ Some biologist or other has told me that for ears of corn of a given hybrid, the volume is proportional to the cube of the length. (This is the standard assumption for organisms of the same species.) OK, I reason that this means $V = kL^{(1/3)}$, and I do the appropriate transformation... Now I have: LogV = alpha + (1/3)LogL + Error. My null hypotheses would seem to be: alpha = 0 AND beta = 1/3. ## Problem #3: Assortative mating \$ It has been commonly observed (at least among arthropod observers) that larger males tend to mate with larger females. Suppose that a theory is posited that males (being males, right ladies??) will pick females (or at least they THINK they are making the decision) smaller than themselves by 10%. Then, for the typical garden variety male Mexican Redknee tarantula (Brachypelma smithi) one would have a model similar to Problem #2 but w/o the transformation. For the male and female leg lengths, we would suppose the following model to be reasonable: FLL = alpha + beta * MLL My null hypotheses would seem to be: alpha = 0 AND beta = 0.90.